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In the determination of a set of parameters from a set of observations by the method 
of least squares, it often occurs that the relationships provided by the observations are not 
really linearly independent when the random errors in the observations are considered. 
A method for finding physically reasonable parameters and confidence limits for para- 
meters is described. This method is based on parameter scaling and diagonalization of 
the matrix of the normal equations. 

Several authors [l-5] have used a technique for least squares analysis of experi- 
mental data which involves diagonalizing the matrix of the normal equations, 
thereby decoupling the equations which determine the parameters. This approach 
is useful when one or more of the parameters is poorly determined because of 
linear dependence. This paper is concerned with an extension of this approach 
which it is believed will be most useful. 

Review of Least Squares 

In least square analysis the usual situation is that a model is proposed in which 
a set of observations, y, (n in number) are thought to be known functions of a set 
of parameters, x, (m in number). 

Yi = fi(Xl P---Y X749 i = l,..., n. (1) 

Because of experimental errors or inadequacies in the model (1) is not expected 
to hold exactly. There will be residuals, ri , defined by 

ri = yi -Lb ,..., GJ, i=l n. ,***, (2) 

* This work was supported by Grant C-071 of the Robert A. Welch Foundation. 
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Least squaring then consists of finding the set of parameters, x, such that the sum 
of squares or residuals, I’, is minimized, 

v = t ri2. 
i=l 

In order to determine the parameters from the observations, the functional 
relationships between observations and parameters are linearized (if they are not 
already linear) by assuming a set of initial values, xi’), for the parameters and 
expanding in a Taylor series about the initial values keeping only the first two 
terms. This linearization leads to the expression 

ri = yi - [ j&F’,..., XL9 + F z lzlO, (Xj - XI”‘,]. 

Defining the vectors r(length n), a(length n), d(length m) by 

and the matrix A (n x m) 

A., = %. *3 axj ,p ’ 

(4) becomes in matrix notation 

r = a - Ad, 

and the equation for V becomes 

V = Pr 

= (a - d’)(a - Ad). 

The conditions for minimization of V are 

av 0 -= 
adj ’ 

j = l,..., m. 

This leads to the normal equations 

Bd= b, 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 
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where B = AA and b = da. If the observations determine the parameters, B is 
nonsingular, and the changes in parameters are determined, 

d = B-lb. (12) 

An iterative solution for the parameters is employed, i.e., a new initial set, x(l), is 
found from 

x(l) = x(O) + d, (13) 

and the Taylor series expansion is made about the new point x(l) and the process 
is repeated. If we are fortunate the iteration will converge and a least square set 
of parameters will be obtained. 

The procedure described is unweighted least squares. Implicit in it is the assump- 
tion that the experimental error in each observation is the same. This might be 
described statistically by assuming that the actual observations are samples from 
a set of independent normal distributions with the same standard deviation u. 
If the different observations yl are expected to be samples from independent normal 
distributions with different standard deviations, ui , it is possible to take this into 
account by weighting each of the equations for the residuals ri [Eq. (S)] by l/ai . 

Linear Dependence and Diagonalization of the Normal Matrix 

Suppose, however, that the matrix B is singular or nearly so. Then the step 
from (11) to (12) is not possible. The obvious conclusion is that the observations 
do not determine the parameters. However, the observations do determine some- 
thing, i.e., there is some information contained in the observations which we 
would like to extract. 

The matrix B is a real, symmetric matrix and can be diagonalized by an ortho- 
gonal transformation, 

h = TBT, (14) 

where h is a diagonal matrix. If B is nonsingular, all the eigenvalues h will be 
greater than zero. If B is singular, one or more of the eigenvalues will be zero. 
Defining c = Tb and D = Td, (11) may be transformed to 

AD=c (15) 

and the equations are decoupled, 

h,D, = cl , etc. (16) 

Then all the D’s for which the corresponding h’s are greater than zero can be 
found. These linear combinations of the original parameters are determined by 
the data. 



370 CURL 

There is, however, the problem that the size of eigenvalues depends on the scaling 
of the parameters. When the calculation and diagonalization of B is carried out 
numerically no eigenvalues will be exactly zero because of rounding errors. 
Lees [S] has considered the question of parameter scaling from the point of view 
of numerical accuracy and has developed a method for parameter scaling which 
makes the eigenvalue size truly reflect the linear dependence of the corresponding 
set of parameters. 

DIAGNOSTIC LEAST SQUARES 

Reasonable Sets of Parameters 

The original parameters x have some fairly well defined physical significance, 
since they are part of the model which is intended to describe the experimental 
observations. Often the x parameters may be at least roughly estimated from 
physical considerations or by comparison to similar parameters determined for 
other cases. 

On the other hand, the physical significance of the parameters D, which are 
determined from (16), is usually very obscure. Thus one is left in the rather 
unsatisfactory position of being unable to discuss the physical significance of the 
parameters (i.e., the D’s) which can be obtained from the experiment. 

It is always possible (by resorting, if necessary, to an opinion poll of experts in 
the field) to estimate a range for each of the x parameters such that if the para- 
meter xi falls outside the range xiL < xi < xiu, one is surprised. If the parameter 
falls into the range its value is considered “reasonable.” This range may be 
extremely large if little is known about xi either theoretically or by analogy to 
similar situations. On the other hand this range may be quite narrow if much is 
known about similar situations. 

The results of the procedure to be described will depend on the estimates of the 
ranges for the parameters and these estimates should always be explicitly stated 
so that the reader will be able to decide for himself whether they are reasonable. 

Now in order to proceed it is necessary to cast what is meant by “reasonable” 
into statistical language. Unfortunately this step is quite arbitrary. The procedure 
adopted here is to call the interval xiL to xiu a normal distribution 90 % confidence 
interval. Thus the a priori best estimate of xi , xi”’ is given by 

x!O) = (x) + x,U)/2, I 

with estimated standard deviation 

(17) 

CT+ = (xi” - xk)/3.290. (18) 
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A new set of parameters, zi , can be defined, 

zi = (Xi - xyyq , (19) 

with the consequence that the z’s are expected to be normally distributed with 
unit standard deviation and zero mean. 

Now the z’s are used instead of the d’s in the least squares procedure. In order 
to distinguish this treatment quantities referring to the z parameters are primed. 
Thus B’z = b’, A’D’ = c’, D’ = T’z, etc. The reader should keep in mind that 
tilde’s instead of primes are being used for the matrix transpose. 

The new parameters D’ which result from the diagonalization process are 
determined by the equation 

Di’ = ci’/&‘, Xi’ 2 u2, 
= 0, Xi’ < CT2 (20) 

(in weighted least squares u = 1 and Xi’ > 1 is the condition). It will be shown 
below that the linear combinations which are better determined by the observations 
than by the a priori estimates will have the corresponding &’ Z 02. On the other 
hand for &’ < u2 the a priori estimates are expected to be more reliable. Now 
there is a value of Di for each of the m values of i, 

and 
z = i+D’, (21) 

x. = x!o) + z.cJ. z 2 z t- (22) 

This procedure finds a set of parameters xi which are fitted to the experimental 
data when the experimental data provides a more precise estimate than the guessed 
set (vide infra). Thus if 

v < 2n02, (23) 

where V is calculated using Eqs. (2) and (3) and the x’s of (22), it is possible to 
say that the data can be fitted within experimental error by the model (Eq. (1)). 
The x’s of (22) can be examined to see if they are physically reasonable. If they 
are, then it is possible to say that at least one set of parameters which fit the data 
and are physically reasonable exist. No claim for uniqueness is made. 

Ordinary least squares as described in (12) is appropriate to the case in which 
Xi 3 a2 for every value of i. 

Con$dence Intervals for the Parameters 

The diagnostic least squares procedure would be of greater value if an estimate 
of confidence intervals for the parameters after the diagnostic least squares can 
be made. 

5W6/3-3 
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Consider first how confidence intervals are estimated for parameters in ordinary 
least squares. The matrix of covariances, C, for the parameters can be found by a 
straight forward statistical treatment to be 

C = u2B-l, (24) 

where Cij = @xi &xi). A normal distribution 95 ‘A confidence interval for 
parameter xi after ordinary least squaring would be given by 

Xi = (Xi + di) f 1.96 d/cii. (25) 

Now in diagnostic least squares the transformation T which diagonalizes B 
does not alter the fundamental situation. The new parameters D are on a footing 
equivalent to the original parameters. Thus the matrix of covariances, CD , for 
the D parameters is given by 

CD = GA-l. (26) 

Since h is diagonal the matrix of covariances, CD , is diagonal and the distributions 
of the parameters D are independent. It is clear that parameters with large h are 
well determined while those with small h are poorly determined. 

The rationale for the procedure for finding reasonable sets of parameters becomes 
clearer. The range xiL to xi” for a parameter xi is a guessed 90 % confidence 
interval. These guessed values of xi are assumed independent so that the guessed 
matrix of covariances for x is diagonal with elements 

(27) 

where Ui = l/3.290[xiu - xi”]. Occasionally it may be possible to correlate the 
errors in two more different x’s. That is, it may be possible to guess a nondiagonal 
C, . The procedure to be followed in this case is outlined in the Appendix. 

Continuing with the matrix of covariances given by (27), the introduction of 
the parameters z gives a corresponding matrix of covariances C, which is diagonal 
with all diagonal elements equal to one. When transformed to the D' basis, it 
remains the same, being the unit matrix. Then the procedure of using the experi- 
mental data to determine those Di' for which the corresponding hi’ > u2 and using 
the estimate to determine those Di"s for which Xi’ < a2 (i.e., setting that Di' = 0), 
means that one is taking the method of determining Di' which gives the smaller 
covariance. The result is a hybrid matrix of covariances. For fitted Dj"s the 
diagonal elements are a2/hi’. For unfitted Di”S the diagonal elements are one. 
All off-diagonal elements are zero. Call the hybrid matrix of covariances Cg’. 
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The transformation which diagonalized B can be reversed, giving a new matrix 
of covariances for the z’s, CAh’, 

c(h) = pc,c’h’y-’ 
z D . (28) 

The normal distribution 90% confidence interval for zi can be stated 

z. = z. f 1 645[(C(h))-]1’2 t z . z St 9 

and the 90 % confidence interval for the x’s can be given 

(2% 

Xi = ~10) + ZiO’i f 1.645ai[(Czh),,]““. (30) 

This is to be contrasted with the same interval before least squaring, 

Xi = xi0 f 1.645ai . (31) 

COMPARISON TO CONDITIONING 
THE NORMAL EQUATIONS BY INCLUDING THE ESTIMATE 

Another approach which has been used when the normal equations are linearly 
dependent is to include the estimates of the parameters, weighted by an appropriate 
factor, in the equations to be fitted. Thus to the n equations Ad = a, the m equa- 
tions w& = 0 (i = l,..., m) are added. Presumably wi should be inversely propor- 
tional to the estimated standard deviation of xi , 

Wi = W/Ui * (32) 

In terms of the z parameters the equations to be used in least squaring are A’z = CI 
and wz = 0. Then the conditioned normal matrix, B,‘, is given by 

B,’ = B’ + w21, (33) 

where B’ is the original normal matrix and I is the m x m unit matrix. 
The same orthogonal transformation, T’, which diagonalizes B’ also diagonalizes 

B,‘. Thus 

A,’ = A’ + w2I (34) 
and 

(D,‘)i = Ci’/(hi’ + w”). (35) 

If w is chosen to be very large (w > u), the parameters are not responsive to 
the data. If w is chosen to be small (w < u), the parameters with small dependence 
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on the data (Ai’ < 9) are fitted to the data even though they are not determined 
by the data. The optimum choice of u’ is probably w - (J. 

When the choice w = u is made, the parameters, (DC’)i, obtained will be 
increasingly unrelated to the data as Ai’ decreases. 

The conditioning equation method corresponds to taking a sort of weighted 
average of the a priori and least squares decoupled parameters with the weighting 
factor varying with parameters. The diagnostic least squares method corresponds 
to deciding, on the basis of which gives the lower standard deviation, to take 
either the least squares or the a priori decoupled parameter. It is clear that for 
Xi’ - o there is a severe risk of making the wrong decision. In that case one 
should try both decisions and even report the result of both. Evidence obtained 
at some future time may then provide a basis for deciding which result is correct. 

2 

FIG. 1. A simple example of the method of diagnostic least squares. The point marked with 
a zero is the original best estimate of the parameters x1 and x2. The large ellipse about 
this point gives the original estimated standard deviations. The observations provide a relationship 
between the two parameters indicated by the lines marked yl, y, , and yS . The point marked I 
is the new estimate of the parameters provided by the diagnostic least squares when the error 
in the observations is large (U = 5). The ellipse around it gives the estimated standard deviations. 
The point marked II is the new estimate of the parameters provided by either diagnostic least 
squares or ordinary least squares when the error in the observations is small (u = 0.1). The dashed 
line connecting the original best estimate to the point II is the locus of results obtained by the 
conditioning equation approach. The X on the line corresponds to the weight factor w = 5 
(w = o when o = 5). 
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A SIMPLE EXAMPLE 

A simple example of the diagnostic least squares procedure is given in Table I 
and Fig. 1. In this example there are two parameters, x1 and x2 , which are to be 
determined from three observations, yl, y, , and y, . The large ellipse in 
Fig. 1 indicates the a priori estimated reasonable range of parameters. The result 
of ordinary least squares is indicated by the point marked II. This point is far 

TABLE I 

A Simple Example 

Postulated functional relationship 
y1 = -20.0x1 + 20.0x, 
y, = 82.9~~ - 68.8~~ 
y, = -63.7~~ + 69.3~~ 

Observations 

Yl = 5 
ys = 10 
y, = 27 

Original estimates of parameters 

x1 = 1.0 i 0.25 
x2 = 1.5 * 0.5 

Diagnostic Least squares 

A, = 1,176. D1 = -0.464~~ + 0.8842, 
h, = 3.5 Dz = 0.8842, + 0.4642, 

Case I, 0 = 5 

x1 = 1.07 i. 0.22 
x2 = 1.25 & 0.24 

V = 129. 

Case II, 0 = 0.1 

x1 = 1.88 + 0.01 
x2 = 2.11 * 0.01 
V = 0.06 
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outside the reasonable range of x. If the data is quite accurate, as indicated by 
the low u for Case II in Table I, this may be the correct result. The “unreason- 
ableness” of x must be explained on physical grounds. However, if the data is not 
very accurate, as indicated for case I in Table I, then the “unreasonable” result 
for x, is almost certainly because of random error in the experimental data. 

The diagnostic least-squares procedure indicates this by the value of h, which 
is much smaller than a2. Further the diagnostic least squares procedure gives the 
parameters indicated by the point marked I on Fig. I, with the 90 % confidence 
limits indicated by the ellipse surrounding it. 

With only two parameters it is possible to graphically illustrate the way in 
which the parameters depend on the observations. The information obtainable 
from diagnostic least squares is essentially the same as that obtainable from a 
cursory examination of the graph. The real power of the method becomes apparent 
when three or more parameters are involved and it is no longer possible to construct 
such graphs. 

The result of the conditioning equations method is indicated by a line corre- 
sponding to the locus of all values of w. The point w = 5 (appropriate to u = 5, 
Case I) is marked with an X. 

APPLICATIONS 

It is possible to envisage many applications in real physical situations. The 
method offers the following information. 

1. Which linear combinations of parameters are determined by the data 
and which are not. It is not necessary to have the data. 

2. Whether a set of parameters which fit the data and are physically reasonable 
exist. The application in Ref. [4] is of this type. 

3. Estimated standard deviations of the least squares parameters and correla- 
tions between parameters obtainable from the hybrid matrix of covariances. 

4. A choice of several least squares sets of parameters one of which is likely 
to be nearly correct. 

The references already cited [l, 2, 3, 4, 51 illustrate the application of at least 
part of the method. We are using the complete method for the analysis of the 
internal rotation structure of the microwave spectrum of methyl isocyanate. 

APPENDIX 

If a matrix of covariances C, for the original parameters x may be estimated 
a priori, the diagnostic least squares proceeds as follows. 
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First C, is diagonalized by a transformation R giving eigenvalues (l&l = RCJ?). 
Then the new parameters z are defined by 

zi = (7 Rij~j)/(A#~2, i = l,..., m. (Al) 

The matrix of covariances for the z’s, C, , is now just the unit matrix. The normal 
equations are set up as though the z’s are the original parameters. B is diagonalized 
(h = TBP, D = Tz). The estimated matrix of covariances for the parameters D 
is just a unit matrix. For all hi 3 cr2, the experimental data determines the corre- 
sponding Di more precisely than the estimate, while for hi < a2 the estimate 
determines Di more precisely. Thus 

Di = Cd/hi 9 hi > U2, 

Di = 0, hi < U2. 

The hybrid matrix of covariances, CD’, is given by 

(CD’)ij = Co2iAi) 6ii Y xi > 02, 

(cD’)ii = 6ij 7  xi < 02. 

642) 

643) 

A set of improved z’s and a hybrid C,’ may be found by transforming back, 

z = t?D, 

C,’ = IfC,‘T. 
644) 

A new set of x’s and a hybrid C,’ may be found by continuing the reverse trans- 
formation, 

Xi = ~10) + 1 R.ji(Aj)‘/2 zj , 
j 0-W 

and confidence intervals for x may be found from the matrix of covariances C,‘. 
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